New algorithm for minimal solution of linear polynomial equations

نویسنده

  • Jan Jezek
چکیده

plays central role in the linear control theory. It occurs in optimal control synthesis, in dead-beat as well as in quadratic criteria [1, 2, 3]. In this equation, a(X), b(X), c(X) are given polynomials, x(X), y(X) are unknown ones. We suppose a(X), b(X) are not both identically zero. Main tool for studying this Euclidean equation is the Euclidean algorithm. It yields general solution and can serve as a computing algorithm for it. In control theory applications, some particular solutions are of interest: those with degree of x or y (or both) minimal. Algorithms are known for selecting the minimal solution from the general one. In this paper, a new algorithm is described which computes the minimal solution directly. This way is more efficient than the general solution computation. The method is also based on the Euclidean algorithm. The indeterminate X can represent either the derivative operator s in the continuous control theory or the delay operator £ in the discrete case. We shall also write a instead of a(X) for brevity. By da we mean the degree of polynomial a(X), da = — GO means zero polynomial a(X) = 0. The leading coefficient of a(X) is denoted by ada. By gcd (a, b) we mean the greatest common divisor of polynomials a, b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method

In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

Resolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method

The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Solving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial

In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...

متن کامل

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetika

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1982